
SALSA: A success story of
migrating research ideas

into industry

Michael W. Godfrey
SWAG, University of Waterloo

migod@uwaterloo.ca

J2EE architecture analysis
using relational algebra

Michael W. Godfrey
SWAG, University of Waterloo

migod@uwaterloo.ca

Lossy program analysis
or

Lies my extractor told me
Michael W. Godfrey

SWAG, University of Waterloo
migod@uwaterloo.ca

Research pre-history

 2002 a research project called RAMP is born
 RAMP == Rapid Assisted Migration Project
 An industrial research collaboration with Sun

Microsystems
 Principal investigators:

 UW: Profs Holt / Malton / Godfrey
 Sun: Brian Down, Wai-Ming Wong

 Part of the CSER research consortium:
http://www.cser.ca

Michael W. Godfrey 4 WASDeTT-08

RAMP to Jackpot

 Contacts thru Sun / RAMP / conferences led
to a sabbatical invitation
 I spent Sept-03 to Aug-04 in Sun Research Labs in

Mountain View, CA. It was awesome.

 I went to work on Jackpot, an AST-based
analysis tool
 Team members:

 Michael Van De Vanter, James Gosling, Tom Ball,
Tim Prinzing

Michael W. Godfrey 6 WASDeTT-08

Sun’s Jackpot Tool

  AST-based analysis + transformation tool
  Metrics summaries
  “Bad smell” detection
  Semi-automated source transformation

  J++-to-Java migration, bad smell removal, …
  Code visualization
  “Smart” editor support

  Basic idea:
1.  Suck up whole program into memory
2.  “Play” with the AST
3.  Output transformed source code

Michael W. Godfrey 7 WASDeTT-08

Hello, Jackpot

  When I arrived in Sept 2003:
 Basic infrastructure works
 Several bad smells can be detected automatically
 Several automated transformations work
  ...

  But
 While the technology is very promising, it’s hard for outsiders to

pick up and adapt easily
 Must understand both Jackpot and javac internals
 Work is slow going and very detailed (AST hacking)

Michael W. Godfrey 8 WASDeTT-08

And then …

  Corporate re-org in early fall 2003
 Oh no!
 James Gosling becomes CTO of tools and the team moves with

him, effectively putting Jackpot on back burner for now
  I’m all alone in the lab with 10 months to go in my sabbatical …

  I continued to play around with Jackpot, writing a few
small plugins for it.
 For fun, I started to implement a Java “fact extractor” based

around the javac AST

Michael W. Godfrey WASDeTT-08 9

And then …

  Van De Vanter introduces me to Sun DE
John Crupi, who has a problem:
  “We wrote the book on J2EE patterns

(good and bad), but we’re still using
grep and perl to fix them !”

  Van De Vanter, Crupi, and I meet
several times to sketch out the design of
a prototype J2EE architecture analysis
tool based around Jackpot

  I was charged with finishing up the fact
extractor and writing a few “smell
detection” scripts

Michael W. Godfrey 10 WASDeTT-08

Kinds of program analysis tools

1.  Special purpose, batch static analysis tools
  Read in code, analyze, spit out (small) result set

  Result set typically makes no sense on its own; need
refs back to source code

  Analysis goals hard-coded into tool
  New goals? Write a new tool!

Michael W. Godfrey 11 WASDeTT-08

Kinds of program analysis tools

2.  [Whole earth / big bang] [analysis / transform]
tools:

  Perform generic analysis (e.g., compilation) and keep all of
compilation “facts” in store
  Then allow AST walkers to generate desired info
  Source-to-source code transformation also possible

  Analysis results can be customized via new tree walkers
  Slow and detailed work
  … but you can do just about anything to the source code

  Each run requires a new compilation (or reading in saved AST /
symbol table)

Michael W. Godfrey 12 WASDeTT-08

Lossy program analysis

“Lossy” fact
extractor

Program
facts

Query
engine

Source
code

Canned
design queries

Simplified
prog lang schema

Live
queries

Michael W. Godfrey 13 WASDeTT-08

Kinds of program analysis tools

3.  “Lossy” program analysis
  Generates a set of “facts” about the program

  An abstracted (“lossy”) view of the system, according to
a defined schema

  The facts are complete, relative to their defined
abstraction level
e.g., can spot global variable uses across packages, but no

information about how for loops are used
  Source code examined only once

•  New run of the tool means only loading the “facts” into the
query engine

•  Can add / refine queries using same factbase (since the facts
don’t change unless the code does)

Michael W. Godfrey 14 WASDeTT-08

“Lossy” program analysis

 Advantages:
 Much easier to write canned queries, GUIs for navigation,

experiment / go fishing with results
 Model is self-contained, complete so no need to consult or

link back to source code
 Source code examined only once!

 Loading factbase usually much faster than compilation

 Disadvantage:
 Source-to-source code transformation not possible

 But can feed results back into a whole-earth analsyis tool
e.g., find known bad smells, feed fixes to a transformation engine

Michael W. Godfrey 15 WASDeTT-08

Michael W. Godfrey 16 WASDeTT-08

Jackpot-to-SALSA

  I “finish” my extractor (still part of Jackpot), and give a
demo for Crupi’s group
  I show how to define and run pattern queries they specify (using

grok/QL) on source code they’ve provided

// Want to find all SessionBeans that call EntityBeans

extendsRTC = extends*
subtypeof = extendsRTC + extendsRTC o implements o extendsRTC
sessionsBeanClasses = classes ^
 subtypeof . {"javax.ejb.SessionBean"}
entityBeanClasses = classes ^ subtypeof . {"javax.ejb.EntityBean"}
sessionBeansCallingEntityBeans = sessionsBeanClasses o calls

 o entityBeanClasses

Michael W. Godfrey 17 WASDeTT-08

SALSA goals [Crupi]

  Crupi pitches the idea to several big clients
  It is very enthusiastically received!
 The SALSA project (Sun Appliance for Live

Software Analysis) is born!

  Main goal:
 (Semi-) automate architectural assessment as

much as possible
 Aim for remote, collaborative, client-driven, early

feedback
 Build a library of known “J2EE bad patterns” +

allow application/domain knowledge to be added
 Feedback into the code (comments, annotations,

transformed source code)

Michael W. Godfrey WASDeTT-08

Later on …

  I finished the fact extractor
  Now, a standalone Java 1.5 application

  If javac can compile your code, I can extract it!
  Extracts info about generic classes/methods, inner (non-local) classes,

exceptions, initialization clauses, parameters, …

  Later work at UWaterloo
  A co-op student who worked on Jackpot later completed a byte-code

extractor using same schema

  Work on SALSA continued at Sun for a while after
  Patterns library
 GUI
  Infrastructure enhancements
 … then most of the the SALSA team left to join a startup 
 … and later still Jackpot was resurrected and integrated into Netbeans

Michael W. Godfrey 19 WASDeTT-08

Things I learned

  Working code is better than an unproven but elegant idea
 “Do the simplest thing that could possibly work!”
 Don’t over-engineer; get it working and get feedback

 You probably got it wrong anyway
  I spent weeks working on modelling inner classes …

  Don’t expect to be able to compete with their
development skills
 You’re a researcher, not a professional developer. There’s a

difference!
 Ask for help when you need it … it will save a lot of time and build

trust in your honesty

Michael W. Godfrey 20

Things I learned

  Standards tools beat the pants off of elegant research
prototypes
e.g., grok vs. SQL … guess which one the developers were more

comfortable with!

  Office politics is real
 Sometimes, need to work in stealth mode
 Good ideas get spiked for bad reasons … deal with it and

move on
 Good ideas get spiked for good reasons too

Michael W. Godfrey WASDeTT-08 21

Things I learned

  Solving a real problem is what industry wants!
 Any given research idea “might work”, but what are your clients

actually interested in? What can’t they do well that you can?
 Ask, then do a lot of listening.
 Don’t expect new research to come from this … but keep in mind

that the experience alone is probably a pretty good paper.

  Work towards them, don’t expect them to work towards you
 They probably don’t understand what research is, and they don’t

(and shouldn’t) really care
 Don’t expect to meet them half way. You’re on their turf! When in

Rome …

Michael W. Godfrey WASDeTT-08 22

Things I learned

  You need a high-level champion
 … who believes in the project, and will fight for it

e.g., resources, personnel, access to infrastructure
 … even if he/she doesn’t really understand it

  You need a high-level technical interactor
 … who can define goals, evaluate progress, suggest contacts,

provide access
 Or else: “Hey, it’s your turn to babysit the researcher!”
 Regular meetings are a must

  I worked in a strange solo-world most of the time

Michael W. Godfrey WASDeTT-08 23

Things I learned

  They need to understand that they will have to take
ownership eventually
  If it goes well, that is.
 You should be so lucky!

Michael W. Godfrey WASDeTT-08 24

SALSA: A success story of
migrating research ideas

into industry

Michael W. Godfrey
SWAG, University of Waterloo

migod@uwaterloo.ca

